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1 Introduction

In this talk, we will introduce the notion of a divisor on a curve. Especially we will discuss about the
relationship between a divisor and a line bundle on a curve. Then we will briefly introduce so-called Čech
cohomology of a quasi-coherent sheaf for a “nice” scheme. After that we will show that the dimension of
the global sections of a line bundle can be described by the dimension of the 1st Čech cohomology and the
degree of the line bundle for a curve. This is a weak form of the Riemann-Roch theorem.

2 Effective Cartier Divisor

Now recall the definition of an effective cartier divisor on a scheme. Let D ⊂ X be a closed subscheme of
a scheme X. Let ID the corresponding quasi-coherent ideal sheaf of D. We call D an effective cartier
divisor if ID is invertible. We define OX(D) = I∨

D = Hom(ID,OX). Clearly this is invertible. We often
say the corresponding line bundle as an effective cartier divisor.

Remark 2.1. Let D be an effective cartier divisor. Then 0 → ID → OX → OD → 0 is a short exact sequence.

Example 2.2. Let A be a dedekind domain and let X = SpecA. Then for any ideal I ⊂ A, I is invertible by
the definition of a dedekind domain. Hence D = V (I) is an effective cartier divisor for any I. This shows
that any closed subscheme of X is an effective cartier divisor.

We want to define a regular section of an invertible sheaf on X.

Definition 2.3. Let L be an invertible sheaf on a scheme X. A global section s ∈ Γ(X,L) is regular if
OX → L by f $→ fs is injective.

Also we define a closed subscheme cut out by s = 0 denoted as V(s) where s ∈ Γ(X,L) is a global section
of a line bundle L.

Definition 2.4. Define I = Im(Hom(L,OX)
s∨−→ OX) where the morphism s∨ is defined by f $→ f(s). Then

I is a quasi-coherent ideal sheaf of X since QCohX is an abelian category. V (s) is the closed subscheme of
X defined by the ideal sheaf I.

We are ready to introduce the following proposition. This shows that an effective cartier divisor is just
a line bundle with a fixed regular section paired.

Proposition 2.5. Let X be a scheme and let L be a line bundle of X.

{Effective cartier divisors on X} ↔ {(L, s) where s is a regular section of L}/∼
D $→ (OX(D), 1D) where 1D : ID ↩→ OX

V (s) ←! (L, s)

Here (L, s) ∼ (L′, s′) if the line bundles are isomorphic and the regular sections send to each other by
the isomorphism.
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Proof. We first show that 1D is regular for an effective cartier divisor D. We are enough to show that

OX(U)
·1D(U)−−−−→ Γ(U,OX(D)) is injective for any affine U = SpecA ⊂ X. This is because if 1D(U) is injective

for all affine U ⊂ X, then since localisation is an exact functor, it preserves injectivity and hence 1D is
stalk-wise injective.

Since ID is quasi-coherent and U is affine, Γ(U,OX(D)) = Hom(ID|U ,OX |U ) = Hom( !ID(U), !A)) ∼=
HomA(ID(U), A). Let ID(U) = I ⊂ A. Then OX(U)

·1D(U)−−−−→ Γ(U,OX(D)) becomes A → HomA(I, A) by
a $→ (φa : i $→ ai). Note that here I is an invertible A-module. Let φa = φb. Then for all i ∈ I, ai = bi.
Since I is invertible, there exists an invertible A-module M such that I ⊗A M ∼= A. Then

"
ik ⊗mk = 1

for a finite index set k ∈ K. a = a
"

ik ⊗mk =
"

aik ⊗mk =
"

bik ⊗mk = b
"

ik ⊗mk = b. Hence 1D(U)
is injective. We conclude that 1D is regular.

Now we want to prove that V (s) is indeed an effective cartier divisor i.e., the corresponding ideal sheaf I
is invertible. Since s is regular, 0 → OX

·s−→ L is exact. Tensoring a line bundle is exact (because it’s locally

free) hence if we tensor L∨ = Hom(L,OX), we get 0 → L∨ ·s⊗L∨

−−−−→ OX exact. Note that s∨ = ·s⊗L∨. This
implies that s∨ is injective and surjective to it’s image and hence L∨ ∼= I. This holds because we are dealing
with a category of quasi-coherent sheaves. This concludes that V (S) is an effective cartier divisor, say D.

By the isomorphism above, Hom(I,OX)
Hom(·s⊗L∨,OX)−−−−−−−−−−−→ Hom(L∨,OX) is also an isomorphism1 and hence

OX(D) ∼= L. Also we can check that the isomorphism sends 1D to s by the given commutative diagram.

L∨ I

OX

s∨

s
1D

Hence (L, s) $→ D $→ (OX(D), 1D) ∼ (L, s) holds.
For the opposite way, D $→ (OX(D), 1D) $→ V (1D) = D by the definition.

3 Divisors on a projective normal curve

Recall that a curve is a 1-dimensional integral separated finite type scheme over a field k. From now on, we
will only focus on a projective normal curve C over k where k = k. We define what a divisor is on a curve.

Definition 3.1. A divisor D ∈ Div(C) on a curve C is a formal sum D =
"

x∈C nx[x] where x ∈ C are
closed and nx are zero for all but finitely many x ∈ C. D is effective if nx ≥ 0 for all x ∈ C.

We define OC(D) by Γ(U,OC(D)) := {f ∈ K | ∀x ∈ U closed, vx(f) ≥ −nx}. Here vx is the valuation
of the discrete valuation ring OC,x and K is the function field of C. OC(D) is invertible for any divisor D.
Read Scholze’s Algebraic Geometry I note 104pg for a proof.

Proposition 3.2. Let D,D′ ∈ Div(C). Then OC(D)⊗OC
OC(D

′) ∼= OC(D +D′).

Proof. Consider the following morphism.

Γ(U,OC(D))⊗Γ(U,OC) Γ(U,OC(D
′)) → Γ(U,OC(D +D′))

by f ⊗ g $→ fg where D =
"

nx[x], D
′ =

"
n′
x[x], ∀x ∈ U, vx(f) ≥ −nx, vx(g) ≥ −n′

x.

1Hom(−,F) is generally only left exact but if F = OX , the functor is exact.
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Then fg ∈ {h ∈ K | ∀x ∈ U, vx(h) ≥ −nx − n′
x} = Γ(U,OC(D +D′)). The sheaf morphism

OC(D)⊗OC
OC(D

′) → OC(D+D′) can be defined by this. Recall that a sheaf morphism is an isomorphism
if it’s stalk-wise isomorphic. Let x ∈ C be a closed point. OC(D)x = ω−nx · OC,x for the uniformizer ω of
OC,x. This is because vx(ω) = 1. Then we can get that (OC(D)⊗OC

OC(D
′))x = OC(D)x⊗OC,x

OC(D
′)x ∼=

(OC(D +D′))x.

Remark 3.3. Direct corollary of this proposition is that OC(D)∨ ∼= OC(−D).

Corollary 3.4. Let D ∈ Div(C) be an effective divisor. Then OC(D) is an effective cartier divisor.

Proof. Let D =
"

nx[x] and nx ≥ 0 for all x ∈ C. Consider OC(−D). Then since vx(f) ≥ 0 for all x,
OC(−D) = I is an invertible ideal sheaf of OC . Hence OC(D) is an effective cartier divisor.

Remark 3.5. By repeating Prop 3.2., for D =
"

nx[x], OC(D) ∼=
#

OC(x)
⊗nx . Here OC(D)⊗−1 =

OC(D)∨

We define degD =
"

nx. After introducing Čech cohomology, degree of D will play an important role by
the Riemann-Roch theorem.

4 Introduction to Čech Cohomology

Now let us fix the scheme X be a variety over k = k. Recall that a variety is a finite type separated integral
scheme over k. We fix some notations as below.

X =
$r

i=1 be an affine cover. J ⊂ {0, . . . , r} = I, UJ =
%

j∈J Uj . F is a quasi-coherent sheaf on X.

Since X is separated, UJ is affine. Now we define a Čech complex denoted by C•(F).

Definition 4.1.
0 → C0(F) → · · · → Cp(F)

dp

−→ Cp+1(F) → · · ·

is called a Čech Complex where Cp(F) =
&

J⊂I,|J|=p+1 F(UJ) and dp : (−1)nres
F(UJ )
F(UJ∪{j})

and n+1 is the

position of j in J ∪ {j} counted from 0. If there is no such restriction, we send to 0. Note that Cp(F) are
k-vector spaces.

Example 4.2. Let X = U0 ∪ U1. Then

0 = C−1(F) → C0(F) = F(U0)⊕ F(U1) → C1(F) = F(U0 ∩ U1) → C2(F) = 0

Let (a0, a1) ∈ F(U0)⊕ F(U1). Then d0(a0, a1) = a0|U0∩U1 − a1|U0∩U1 .

Remark 4.3. By a direct computation, we can check that dp+1 ◦ dp = 0. Hence C• is indeed a complex.

Now we define a cohomology from this complex.

Definition 4.4. Let X and F be given as above. The p-th cohomology of F on X is Hp(X,F) =
Ker dp/ Im dp−1. If F is coherent, the dimension of p-th cohomology as a k-vector space is denoted by
dimHp(X,F) = hp(X,F).

Remark 4.5. This is independent of choice of affine covers but we will skip this. See Vakil’s note Theorem
18.2.2 for a proof.

We introduce some basic properties of Čech cohomology.

Proposition 4.6. The following properties hold.

(a) H0(X,F) = Γ(X,F).
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(b) If X is affine, Hp(X,F) = 0 for all p > 0.

(c) Let X be projective. Then for all p > dimX, Hp(X,F) = 0.

(d) Let i : X ↩→ Y be a closed immersion. Then Hp(Y, i∗F) = Hp(X,F) for all p.

Proof. (a): Consider the following complex 0 → C0(F)
d0

−→ C1(F) → · · · . Since Im d−1 = 0, H0(X,F) =
Ker d0. Let φ ∈ C0(F). Then φ = (φ1, · · · ,φr) where φi ∈ F(Ui). Then (d0φ)ij = (φi−φj)|Ui∩Uj = 0 which
is the sheaf property of global sections. Hence H0(X,F) = Γ(X,F).

(b): This is trivial because X itself is an affine cover of X and C1(F) = 0.

(c): Let dimX = n. Since X is projective, X is a closed subscheme of Pr
k for some r. Hence we can find

f0, . . . , fn such that V+(f0, . . . , fn) ∩ X = ∅. This is possible because f0, . . . , fn reduces dimension n + 1.
Now define Ui = X \ V+(fi) = D+(fi) ∩X. Then

$
Ui = X. Here Ui is affine because D+(fi) is affine and

D+(fi) ∩X is a closed subscheme of affine which is also affine. Since Cp(F) = 0 for all p > n.

(d): Let {U1, . . . , Ur} covers Y . Then {i−1(U1)), . . . , i
−1(Ur)} covers X. Now since i∗F(UJ) = F(i−1(UJ)),

Cp(i∗F) = Cp(F).

Proposition 4.7. Let 0 → F1 → F2 → F3 → 0 be a short exact sequence. Then there exists a long exact
sequence induced by the short exact sequence namely

0 Γ(X,F1) Γ(X,F2) Γ(X,F3)

H1(X,F1) H1(X,F2) H1(X,F3)

H2(X,F1) · · · .

Proof. (Sketch) We can check that the following diagram is commutative.

0 Cp(F1) Cp(X,F2) Cp(X,F3) 0

0 Cp+1(F1) Cp+1(X,F2) Cp+1(X,F3) 0

dp dp dp

Rows are exact because F is quasi-coherent, all UJ are affine, and direct sum is exact. Here we use the fact
that taking global sections is exact for affine schemes. By applying snake’s lemma, we can get the long exact
sequence.

Remark 4.8. Taking global sections as a functor is left exact in general. Defining Čech cohomology shows
that this left exactness of global sections can be extended to a long exact sequence.

Now we again assume X to be projective.

Definition 4.9. Let F be a coherent sheaf on a projective variety X. The Euler characteristic of F
denoted by χ(X,F) =

"dimX
n=0 (−1)nhn(X,F).

Proposition 4.10. Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of coherent sheaves. Then
χ(X,F2) = χ(X,F1) + χ(X,F3).
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Proof. (Sketch) Consider the long exact sequence. Then use the rank-nullity theorem. (If Vi are k-vector
spaces and 0 → V1 → V2 → · · · → Vn → 0 exact, then

"
(−1)i dimVi = 0)

5 Back to curves and Riemann-Roch Theorem

Let us go back to the situation of curves. Let C be a projective normal curve as before and F be a
coherent sheaf on C. Since C is 1-dimensional, hp(C,F) = 0 for all p > 1. Hence χ(C,F) = dimΓ(X,F)−
dimH1(C,F).

Definition 5.1. Let L be a line bundle on C. The degree of L denoted by degL is defined by degL =
χ(C,L)− χ(C,OC)).

Theorem 5.2 (Weak version of the Riemann-Roch theorem). Let D be a divisor on C, L be a line bundle
on C such that L ∼= OC(D). Then degL = degD.

In other words, dimΓ(C,L) = dimH1(C,L) + degD + χ(C,OC).

Proof. Recall that we can make a short exact sequence from an effective cartier divisor. Let p ∈ C be a
closed point. Then p is an effective cartier divisor. Hence 0 → OC(−p) → OC → Op → 0 is exact. Here Op

is not a stalk at p but a skyscraper sheaf at p. If we tensor with L, we get

0 → OC(−p)⊗ L → L → Op ⊗ L → 0.

By the additive law of Euler characteristics, χ(C,L) = χ(C,OC(−p)⊗ L) + χ(C,Op ⊗ L).
From χ(C,Op⊗L) = h0(C,Op⊗L)−h1(C,Op⊗L), h1(C,Op⊗L) = h1(p,Op⊗L) = 0 since p is affine. For
h0(C,Op⊗L), Op⊗L ∼= Op and hence h0(C,Op⊗L) = h0(C,Op) = h0(p,Op). Then Γ(p,Op) = κ(p) where
κ(p) is a finite extension of k. In our assumption, k is algebraically closed and hence h0(p,Op⊗L) = 1. This
implies that χ(C,L) = χ(C,OC(−p)⊗L)+1. Replace L by L⊗OC(p). Then we get, χ(L)+1 = χ(OC(p)⊗L).
This implies that degL = χ(OC(D)) − χ(OC) = χ(

#
OC(x)

⊗nx) − χ(OC) =
"

nx = degD by repeating
the above equation.

Remark 5.3. Riemann showed that dimΓ(C,L) ≥ degD + χ(C,OC) and Roch filled the missing gap.

Definition 5.4. The genus g of the curve C is g = 1− χ(OC).

Corollary 5.5. Let C be a curve as above and let the genus of the curve be g. Let L be a line bundle on a
curve C such that degL = g. Then there exists an effective cartier divisor D such that L ∼= OC(D).

Proof. χ(L)− χ(OC) = g implies that χ(L) = 1. Hence dimΓ(C,L) = dimH1(C,L) + 1 > 0. Since Γ(C,L)
is non-zero, we can pick a non-zero global section s ∈ Γ(C,L). We claim that s is regular. We are enough
to show that s|U ∕= 0 for all open U ⊂ C. Since C is integral, for any x ∈ U , s|U $→ sx ∕= 0 is injective.
Hence s|U ∕= 0 and s is regular. Then V (s) = D is an effective cartier divisor and hence by Prop 2.5.
OC(D) ∼= L.
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